News / Space News |
Biodiversity in salt marshes builds climate resilience
NSF | AUGUST 30, 2016
Coastal ecosystems worldwide are feeling the heat of climate change. In the Southeastern U.S., salt marshes have endured massive grass die-offs as a result of intense drought, which can affect everything from fisheries to water quality.
Now, new research shows that a mutualistic relationship -- where two organisms benefit from each other's activities -- between ribbed mussels and salt marsh grasses may play a critical role in helping salt marshes bounce back from extreme climate events such as drought.
The results found that mussels piled up in mounds around salt grass stems helped to protect the grasses by improving water storage around their roots and reducing soil salinity. With the mussels' help, marshes can recover from drought in less than a decade. Without their help, it can take more than a century.
Using Google Earth, the team selected nine sites that contained relatively large marsh areas likely to experience drought-associated grass die-offs.
The marine biologists found that wherever there were clusters of mussels embedded in the mud around the base of the grass stems, the grass survived. In fact, grass growing in mussel clusters had a 64 percent probability of surviving, compared to a one percent probability in areas without mussels.
The researchers suspected that mussels, by paving the marsh surface with their ribbed shells, attracted burrowing crabs that excavate underground water storage compartments.
The scientists are also testing whether other at-risk ecosystems -- such as seagrass meadows and coral reefs -- may be similarly protected by mutualistic relationships between keystone species.