News / Science News

    Harnessing tomato jumping genes could help speed-breed drought-resistant crops

    Researchers from the University of Cambridge’s Sainsbury Laboratory (SLCU) and Department of Plant Sciences have discovered that drought stress triggers the activity of a family of jumping genes (Rider retrotransposons) previously known to contribute to fruit shape and colour in tomatoes.



    Tomatoes. Photo: Robin St/Unsplash


    Their characterisation of Rider revealed that the Rider family is also present and potentially active in other plants, including economically important crops such as rapeseed, beetroot and quinoa. This highlights its potential as a source of new trait variations that could help plants better cope with more extreme conditions driven by our changing climate.

    This wide abundance encourages further investigations into how it can be activated in a controlled way, or reactivated or re-introduced into plants that currently have inactive Rider elements so that their trait diversification potential can be regained. Such an approach has the potential to significantly reduce breeding time compared to traditional methods.

    “Transposons carry potential for crop improvement. They are powerful drivers of trait diversity, and while we have been harnessing these traits to improve our crops for generations, we are now starting to understand the molecular mechanisms involved,” said Dr Matthias Benoit, the paper's first author, formerly at SLCU.

    Transposons, more commonly called jumping genes, are mobile snippets of DNA code that can copy themselves into new positions within the genome - the genetic code of an organism. They can change, disrupt or amplify genes, or have no effect at all. Only now are scientists realising that transposons are not junk at all but actually play an important role in the evolutionary process, and in altering gene expression and the physical characteristics of plants.

    Using the jumping genes already present in plants to generate new characteristics would be a significant step forward from traditional breeding techniques, making it possible to generate new traits in crops that have traditionally been bred to produce uniform shapes, colours and sizes to make harvesting more efficient and maximise yield.

    “In a large population size, such as a tomato field, in which transposons are activated in each individual we would expect to see diverse new traits. By controlling this ‘random mutation’ process within the plant we can accelerate this process to generate new phenotypes that we could not even imagine,” said Dr Hajk Drost at SLCU, a co-author of the paper.

    Today’s gene targeting technologies are very powerful, but often require some functional understanding of the underlying gene to yield useful results and usually only target one or a few genes. Transposon activity is a native tool already present within the plant, which can be harnessed to generate new phenotypes or resistances and complement gene targeting efforts.

    Using transposons to generate new mutations offers a transgene-free method of breeding that acknowledges the current EU legislation on Genetically Modified Organisms.

    “Identifying that Rider activity is triggered by drought suggests that it can create new gene regulatory networks that would help a plant respond to drought,” said Benoit. “This means we could harness Rider to breed crops that are better adapted to drought stress by providing drought responsiveness to genes already present in crops. This is particularly significant in times of global warming, where there is an urgent need to breed more resilient crops.” (University of Cambridge)

    SEPTEMBER 23, 2019



    YOU MAY ALSO LIKE

    Deafness in early childhood is known to lead to lasting changes in how sounds are processed in the brain, but new research shows that even mild-to-moderate levels of hearing loss in young children can lead to similar changes.
    Researchers have successfully used sound waves to control quantum information in a single electron, a significant step towards efficient, robust quantum computers made from semiconductors.
    A promising replacement for the toxic and flammable greenhouse gases that are used in most refrigerators and air conditioners has been identified by researchers from the University of Cambridge.
    Astronomers have spotted three giant black holes within a titanic collision of three galaxies.
    NIH mouse study could prompt scientists to rethink how benzodiazepines work.
    A new study by chemists at the University of Arkansas shows that X-ray crystallography, the standard method for determining the structure of proteins, may provide inaccurate information about a critical set of proteins -- those found in cell membranes -- which in turn could be leading to poor and inefficient drug design.

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact