Health / Medical Topics

    Ion Channels in Vascular Endothelium Pathway

    Endothelial cells (EC) form a multifunctional signal-transducing surface that performs different tasks dependent on its localization in the vessel tree. Arterial EC provide a pathway for delivery of oxygen from blood to tissue. They modulate the tone of vascular smooth muscle cells, which in turn controls blood pressure and blood flow by adjusting the caliber of arteries and arterioles. In the microvascular bed, EC regulate the permeation of various metabolites, macromolecules, and gases, as well as autocrine and paracrine factors and are involved in the regulation of cell nutrition. In all vessel types, EC are involved in blood coagulation, control of the transport between blood and tissue, movement of cells adhering to EC, wound healing, and angiogenesis. Other functions require an active response of EC to various signals of mechanical, chemical, or neuronal nature. This signal transduction is impaired during vessel disease (arteriosclerosis) and injury, inflammation, or hemodynamic disturbances (hypertension). The role of ion channels in the transduction of these signals into cellular responses is still a matter of debate and has received substantial attention only in the last few years. Our current knowledge is limited to effects of ion channels on fast endothelial responses, these channels being mainly essential for the regulation of Ca2+ signaling. Here we illustrate the negative feedback of cyclic nucleotides (CNG)-induced membrane depolarization on Ca2+ entry. Ca2+ entry via receptor-activated cation channels (RACC) and/or store-operated or capacitative (SOC) elevates [Ca2+]i and stimulates endothelial nitric oxide synthase (eNOS). The subsequent activation of soluble guanylate cyclase (sGC) increases cGMP. cGMP and cAMP, via agonist activation of G protein-coupled receptors (GPCRs), Gs, and adenylate cyclase (AC), activate CNG and/or nonselective cation channels (HCN) channels, which induce membrane depolarization. This depolarization exerts a negative feedback on Ca2+ entry via RACC/SOC. In addition, a feedback inhibition of Ca2+ entry channels via activation of PKG has been described. (NCI Thesaurus/BIOCARTA)




    YOU MAY ALSO LIKE

    Ion Channel Protein Genes encode Ion Channel Proteins that typically aggregate in membrane-associated complexes forming pores whose activities regulate the movement of…
    Ion Channel Proteins typically aggregate in membrane-associated complexes forming pores whose activities regulate the movement of ions through cellular membranes to affect…
    Molecules transmitting signals into cells often act through receptors in the plasma membrane that stimulate production of second messengers. When activated by…
    A transmembrane pore that presents a hydrophilic channel for ions to cross a lipid bilayer down their electrochemical gradients. Some degree…
    An atom or a molecule that has a positive or negative electrical charge. Examples are sodium, potassium, calcium, chloride, and phosphate. These…
    A measurement of the volume of serum or plasma that would be cleared of Iohexol through excretion for a specified unit of…

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact