News / Space News |
NASA's Cassini Finds Saturn's Rings Coat Tiny Moons
New findings have emerged about five tiny moons nestled in and near Saturn's rings. The closest-ever flybys by NASA's Cassini spacecraft reveal that the surfaces of these unusual moons are covered with material from the planet's rings - and from icy particles blasting out of Saturn's larger moon Enceladus.
The new research, from data gathered by six of Cassini's instruments before its mission ended in 2017, is a clear confirmation that dust and ice from the rings accretes onto the moons embedded within and near the rings.
Scientists also found the moon surfaces to be highly porous, further confirming that they were formed in multiple stages as ring material settled onto denser cores that might be remnants of a larger object that broke apart. The porosity also helps explain their shape: Rather than being spherical, they are blobby and ravioli-like, with material stuck around their equators.
Of the satellites studied, the surfaces of those closest to Saturn - Daphnis and Pan - are the most altered by ring materials.
The surfaces of the moons Atlas, Prometheus and Pandora, farther out from Saturn, have ring material as well - but they're also coated with the bright icy particles and water vapor from the plume spraying out of Enceladus. (A broad outer ring of Saturn, known as the E ring, is formed by the icy material that fans out from Enceladus' plume.)
The key puzzle piece was a data set from Cassini's Visible and Infrared Mapping Spectrometer (VIMS), which collected light visible to the human eye and also infrared light of longer wavelengths.
It was the first time Cassini was close enough to create a spectral map of the surface of the innermost moon Pan. By analyzing the spectra, VIMS was able to learn about the composition of materials on all five moons.
VIMS saw that the ring moons closest to Saturn appear the reddest, similar to the color of the main rings. Scientists don't yet know the exact composition of the material that appears red, but they believe it's likely a mix of organics and iron.
The moons just outside the main rings, on the other hand, appear more blue, similar to the light from Enceladus' icy plumes.
Questions remain, including what triggered the moons to form. Scientists will use the new data to model scenarios and could apply the insights to small moons around other planets and possibly even to asteroids. (NASA)