News / Space News

    NASA Map Reveals a New Landslide Risk Factor

    In the deadly 2018 earthquake in the Indonesian city of Palu, intense shaking changed solid ground into a landslide of flowing mud, multiplying the death toll and economic impact. A new paper shows that this disastrous effect was triggered by a previously unknown risk factor: flooding rice fields for farming.



    Rice terraces. Photo: Sebastian Herrmann/Unsplash


    Soil liquefaction, which causes this kind of landslide, occurs when the shaking from a large earthquake rips through moist, loose soil, overpowering the friction that normally holds dirt particles together. The soil loses its structural integrity and begins to flow like a liquid. Buildings fall as their support washes away. Heavy objects like cars sink into the muck, while buried water and sewer pipes rise to the surface.

    In Palu, although early reporting blamed most of the estimated 2,000 fatalities on a tsunami, surveys soon showed that soil-liquefaction landslides caused at least as much damage as the ocean waves did. That puzzled researchers. Soil liquefaction usually occurs in flat landscapes with wet, sandy or silty ground, such as coastal plains.

    Researchers had thought flat terrain was a prerequisite because the water table - the distance below ground where the soil becomes saturated with water - must be shallow, and that's rare on a hillside. Palu has sandy soil, but it's in a gently sloping valley that appeared to pose little risk.

    They were startled to notice that all the landslides originated along a distinct line. When they took a closer look, they saw that the line was an aqueduct.

    The Gumbasa Aqueduct was completed in 1913 to reduce the risk of famine by providing a consistent water supply for local farmers. Only land downhill from the aqueduct is irrigated; water is not pumped uphill. Farmers just below the aqueduct practice wet rice cultivation, in which fields are flooded at one point in the growing cycle.

    This predominant method of rice farming in tropical Asia raises the water table over time to just below the ground surface. Farther downhill, farmers grow coconut palms, which require less irrigation and don't raise the water table as much.

    Damage maps revealed widespread liquefaction below the aqueduct. Multiple slides carried some 6 square miles (16 square kilometers) of land far downhill - in some places farther than 49 feet (15 meters). The slides were slowed or halted by the coconut palm plantations. No liquefaction was identified uphill of the aqueduct.

    Trees played a critical role in stopping the slides, and the researchers suggest that planting more trees - perhaps interspersed with rice fields - in areas that are intensively irrigated might reduce the risk of soil liquefaction. (NASA)

    OCTOBER 20, 2019



    YOU MAY ALSO LIKE

    In this perpetual choreography, Naiad swirls around the ice giant every seven hours, while Thalassa, on the outside track, takes seven and a half hours. An observer sitting on Thalassa would see Naiad in an orbit that varies wildly in a zigzag pattern, passing by twice from above and then twice from below.
    Picture helps answer important questions about how galaxies acquire magnetic fields.
    "Super-Puffs" may sound like a new breakfast cereal. But it's actually the nickname for a unique and rare class of young exoplanets that have the density of cotton candy. Nothing like them exists in our solar system.
    This image from NASA's Spitzer Space Telescope shows the Perseus Molecular Cloud, a massive collection of gas and dust that stretches over 500 light-years across.
    Astronomers using ESO’s Very Large Telescope have observed reservoirs of cool gas around some of the earliest galaxies in the Universe. These gas halos are the perfect food for supermassive black holes at the centre of these galaxies, which are now seen as they were over 12.5 billion years ago.
    Jupiter's south pole has a new cyclone.

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact