News / Space News

    NASA to Map the Surface of an Asteroid

    NASA | AUGUST 2, 2016

    NASA’s OSIRIS-REx spacecraft will launch September 2016 and travel to a near-Earth asteroid known as Bennu to harvest a sample of surface material and return it to Earth for study. The science team will be looking for something special. Ideally, the sample will come from a region in which the building blocks of life may be found.



    Bennu.


    To identify these regions on Bennu, the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) team equipped the spacecraft with an instrument that will measure the spectral signatures of Bennu’s mineralogical and molecular components.

    Known as OVIRS (short for the OSIRIS-REx Visible and Infrared Spectrometer), the instrument will measure visible and near-infrared light reflected and emitted from the asteroid and split the light into its component wavelengths, much like a prism that splits sunlight into a rainbow.

    OVIRS will work in tandem with another OSIRIS-REx instrument — the Thermal Emission Spectrometer, or OTES. While OVIRS maps the asteroid in the visible and near infrared, OTES picks up in the thermal infrared. This allows the science team to map the entire asteroid over a range of wavelengths that are most interesting to scientists searching for organics and water, and help them to select the best site for retrieving a sample.

    Using information gathered by OVIRS and OTES from the visible to the thermal infrared, the science team will also study the Yarkovsky Effect, or how Bennu's orbit is affected by surface heating and cooling throughout its day. The asteroid is warmed by sunlight and re-emits thermal radiation in different directions as it rotates.

    This asymmetric thermal emission gives Bennu a small but steady push, thus changing its orbit over time. Understanding this effect will help scientists study Bennu’s orbital path, improve our understanding of the Yarkovsky effect, and improve our predictions of its influence on the orbits of other asteroids.

    The team also had to plan for another major threat: water. The scientists will search for traces of water when they scout the surface for a sample site.




    YOU MAY ALSO LIKE

    An international team of astronomers discovered an exoplanet, called NGTS-1b, revolving around M-dwarf star NGTS-1, that the team said does not fit existing notions of how stars and planets form.
    Scientists have discovered a new planet with the mass of Earth, orbiting its star at the same distance that we orbit our sun. The planet is likely far too cold to be habitable for life as we know it, however, because its star is so faint.
    ESA and NASA’s Solar and Heliospheric Observatory, or SOHO, saw a bright comet plunge toward the sun at nearly 1.3 million miles per hour.
    Venus may have had a shallow liquid-water ocean and habitable surface temperatures for up to 2 billion years of its early history, according to computer modeling of the planet’s ancient climate by scientists at NASA’s Goddard Institute for Space Studies.
    Scientists have uncovered strong evidence of a tiny, rocky object being torn apart as it spirals around a white dwarf star. This discovery validates a long-held theory that white dwarfs are capable of cannibalizing possible remnant planets that have survived within its solar system.
    After extraordinary science findings and technological innovations, a NASA spacecraft launched in 2004 to study Mercury will impact the planet’s surface, most likely on April 30, after it runs out of propellant.

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact