Un mundo de conocimiento
    Espacio

    Los Pilares de la Creación: el icono del nuevo universo

    Las imágenes de las famosas formaciones de nubes y polvo pertenecientes a la Nebulosa del Águila, tomadas por el telescopio espacial Hubble en 1995 y 2014, dieron la vuelta al mundo dejando boquiabierto a más de uno. Ahora, la gran sensibilidad y la afinada resolución del nuevo telescopio espacial James Webb permiten ver estrellas antes invisibles, estrellas de tan sólo unos cientos de miles de años de edad. Estas nuevas imágenes son clave para entender mejor cómo, dónde y cuándo nacen las estrellas y, por ende, los sistemas planetarios.



    Imagen de los icónicos Pilares de la Creación construida a partir de dos imágenes infrarrojas tomadas por el telescopio espacial James Webb. Esta fusión del infrarrojo cercano (vista por la cámara NIRCam) e infrarrojo medio (cámara MIRI) aporta nuevos detalles sobre la famosa región de formación estelar. Foto: NASA, ESA, CSA, STScI, J. DePasquale (STScI), A. Pagan (STScI), A. M. Koekemoer (STScI) NASA, ESA, CSA, STScI, J. DePasquale (STScI), A. Pagan (STScI), A. M. Koekemoer (STScI)


    Los Pilares de la Creación son una pequeña región dentro de la vasta Nebulosa del Águila que se encuentra a 6 500 años-luz de distancia (o 61 mil billones de kilómetros) dentro del brazo espiral Carina-Sagitario de nuestra galaxia, la Vía Láctea.

    El mayor de los tres pilares tiene una longitud de unos 4 años luz (38 billones de km) y las pequeñas protuberancias en forma de dedo en los bordes de los pilares son mayores que el Sistema Solar.

    Estos pilares están compuestos por gas y polvo interestelar que en su mayor parte es gas frío de hidrógeno molecular (H₂) y granos microscópicos de material expulsado por estrellas como carbono o silicatos.

    En una nebulosa de emisión como la Nebulosa del Águila, el gas es ionizado por la luz ultravioleta de estrellas relativamente cercanas y calientes, lo que hace que la nebulosa emita luz en varias longitudes de onda y podamos observarla en su plenitud.

    El polvo interestelar es uno de los principales ingredientes en la formación estelar. De ahí el nombre de Los Pilares de la Creación, ya que es una región repleta de estrellas en gestación.

    Dentro de una nube de polvo hay regiones de mayor o menor densidad. Los grumos de mayor densidad generan una mayor fuerza gravitatoria, por lo que atraen el gas y el polvo de alrededor más eficazmente que las regiones de menor densidad y crecen a mayor velocidad.

    Pasado un límite, cuando un grumo ha conseguido suficiente masa, el proceso es imparable y comienza a colapsar bajo su propia atracción gravitatoria.

    Lo que significa que comienza a concentrar una gran cantidad de gas y polvo en una zona acotada, en un núcleo, que se calienta lentamente y acaba formando una nueva estrella.

    Por ello, las estrellas tienden a nacer en grupo, ya que provienen de los distintos grumos de una misma sopa de gas y polvo interestelar.

    El proyecto STARFORGE (Star FORmation in Gaseous Environments) es una iniciativa de varias instituciones para desarrollar simulaciones por ordenador de los procesos involucrados en la formación estelar.

    En sus simulaciones, STARFORGE alcanza resoluciones espaciales de unas pocas decenas de unidades astronómicas, lo que permite estudiar la formación, el movimiento y la retroalimentación de estrellas individuales dentro de una nube molecular gigante (de unas 20 000 masas solares) en colapso.

    En la animación titulada STARFORGE: El Yunque de la Creación (cinemática) podemos ver que estas regiones son sumamente activas con chorros protoestelares supersónicos, fuertes vientos estelares y supernovas en acción.

    El vídeo de 360º Los Pilares de la Creación en STARFORGE muestra el momento en el que la nube molecular está siendo parcialmente destruida por estrellas recién nacidas y aparecen estructuras filamentosas de mayor densidad que recuerdan a los Pilares de la Creación.

    Esto ocurre debido a que las estrellas masivas son extremadamente brillantes y lanzan potentes vientos estelares, que calientan y empujan el gas cercano.

    Este empuje expulsa rápidamente el gas de baja densidad, mientras que las regiones de mayor densidad se fusionan en pilares, que tardan más en ser expulsados.

    Aunque el telescopio espacial Hubble de la NASA ha tomad

    o muchas imágenes impresionantes del universo, la instantánea de los Pilares de la Creación tomada en 1995 destaca sobre las demás. A finales de 2014, con motivo de su 25 aniversario, volvieron a fotografiar los pilares tomando una nueva imagen más detallada en luz visible y otra en luz infrarroja.

    En la imagen visible los pilares se muestran como nubes semiopacas que han sobrevivido a los vientos ionizantes procedentes de un cúmulo estelar próximo. En esta imagen el color azul representa el oxígeno, el rojo el azufre y el verde el nitrógeno y el hidrógeno.

    Por otro lado, la radiación infrarroja atraviesa gran parte del gas y el polvo, excepto en las regiones más densas de los pilares, lo que permite ver un mayor número de estrellas, entre ellas muchas recién nacidas, que en luz visible quedan ocultas por el polvo en el interior de los pilares.

    El rango infrarrojo es tan grande que el nuevo telescopio espacial James Webb tiene varias cámaras con distintos filtros en este rango: la cámara NIRCam que detecta la luz infrarroja cercana (radiación de longitud de onda entre 0.6 y 5 micrómetros) y el instrumento MIRI para el infrarrojo medio (entre 5 y 28 micrómetros).

    En la imagen que NIRCam tomó de los Pilares de la Creación hace un par de meses de las estrellas recién formadas, las protagonistas son las pequeñas esferas rojizas localizadas en el exterior de los pilares.

    También destacan las estructuras onduladas de color rojo intenso en los bordes superiores de varios pilares.

    Éstas son consecuencia de la interacción entre los chorros supersónicos de hidrógeno procedentes de estrellas jóvenes altamente activas y el medio interestelar (gas y polvo) de alrededor. Se calcula que estas estrellas sólo tienen unos cientos de miles de años y seguirán formándose aún durante millones de años.

    La luz infrarroja media, por otro lado, es excelente para revelar el gas y el polvo. Las zonas de mayor densidad de polvo son las regiones gris oscuro en la imagen del instrumento MIRI.

    La región roja en la parte superior es donde el polvo es más difuso y frío. Sin embargo, esta luz no es capaz de detectar la luz proveniente de la mayoría de las estrellas de la región, ya que no están rodeadas de suficiente polvo.

    Las pocas estrellas rojizas de la imagen son las recién formadas, que aún no se han despojado de su polvoriento manto, y las azules son las estrellas envejecidas. (Itziar Garate Lopez/The Conversation)

    27 DE DICIEMBRE DE 2022



    TAMBIÉN TE PUEDE INTERESAR

    Ingenuity, el histórico helicóptero de la NASA en Marte, ha finalizado su misión en el planeta rojo después de superar expectativas y realizar decenas de vuelos más de lo planeado.
    Si deseamos construir un planeta habitable, los hielos son un­ ingrediente vital porque son la fuente principal de varios elementos clave, a saber: carbono, hidrógeno, oxígeno, nitrógeno y azufre (denominados aquí como CHONS).
    Una investigación científica de la NASA amplía la búsqueda de vida más allá de nuestro sistema solar al indicar que 17 exoplanetas (mundos fuera de nuestro sistema solar) podrían tener océanos de agua líquida, un ingrediente esencial para la vida, debajo de sus capas de hielo.
    Sagitario A*, el agujero negro supermasivo en el centro de la Vía Láctea, es mucho menos luminoso que otros agujeros negros en el centro de las galaxias que podemos observar, lo que significa que el agujero negro central de nuestra galaxia no ha estado devorando activamente material a su alrededor.
    El telescopio espacial James Webb de la NASA ha descubierto una nueva característica nunca antes vista en la atmósfera de Júpiter. La corriente en chorro de alta velocidad, la cual se extiende por más de 4.800 kilómetros (3.000 millas) de ancho, se encuentra sobre el ecuador de Júpiter, por encima de las principales cubiertas de nubes.
    Usando el Atacama Large Millimeter/submillimeter Array, los astrónomos han encontrado el posible "hermano" de un planeta que orbita alrededor de una estrella distante.

    © 1991-2024 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Aviso legal
    Contact