Health / Health News

    Placenta changes could mean male offspring of older mums more likely to develop heart problems in later life

    Both male and female fetuses do not grow as large in older mothers, but there are sex-specific differences in changes to placental development and function. These are likely to play a central role in the increased likelihood of later-life heart problems and high blood pressure in males.



    Placenta changes could mean male offspring of older mums more likely to develop heart problems in later life. Photo: freestocks.org/Unsplash


    In humans, women over 35 are considered to be of advanced maternal age. The study looked at pregnant rats of a comparable age. In aged mothers, the placenta of female fetuses showed beneficial changes in structure and function that would maximise the support of fetal growth.

    In some instances, the placenta even supported the female fetus better than the placenta of a younger mother. In the case of male fetuses however, the placenta showed changes that would limit fetal growth in the aged pregnant rats.

    “This new understanding of placental development and function could contribute to better management of human pregnancies, and development of targeted interventions to improve the longer-term health of children born to older mothers,” said Dr Tina Napso, a postdoctoral fellow at the University of Cambridge and first author of the study.

    Pregnancy in older mothers is associated with a heightened risk of complications for both the mother and her baby. These include preeclampsia - raised blood pressure in the mother during pregnancy, gestational diabetes, stillbirth and fetal growth restriction. Until now there has been limited understanding of how the placenta is altered by advanced maternal age.

    The placenta transports nutrients and oxygen from mother to fetus, secretes signalling factors into the mother so she supports fetal development, and is the main protective barrier for the fetus against toxins, bacteria, and hormones - such as stress hormones - in the mother’s blood.

    It is highly dynamic in nature, and its function can change to help protect the growing fetus when conditions become less favourable for its development, for example through a lack of nutrients or oxygen or when the mother is stressed.

    The researchers analysed the placentas of young (3-4 months old) and aged rats (9.5-10 months old) that were pregnant with male and female offspring. The aged rats correspond to approximately 35 year-old humans. Rats are a useful model as their biology and physiology have a number of important characteristics in common with those of humans.

    The study found that advanced maternal age reduced the efficiency of the placenta of both male and female fetuses. It affected the structure and function of the placenta more markedly for male fetuses, reducing its ability to support growth of the fetus.

    “A pregnancy at an older age is a costly proposition for the mother, whose body has to decide how nutrients are shared with the fetus. That’s why, overall, fetuses do not grow sufficiently during pregnancy when the mother is older compared to when she is young,” said Dr Napso. “We now know that growth, as well as gene expression in the placenta is affected in older mothers in a manner that partially depends on sex: changes in the placentas of male fetuses are generally detrimental.”

    An earlier study performed by the collaborators showed that offspring from mothers who enter pregnancy at an older age have poor heart function and high blood pressure as young adults, and particularly so if they are male.

    This new research was conducted to understand why, and whether this sex difference may be due to how the male and female fetuses are supported within the womb in an aged mother. (University of Cambridge)

    NOVEMBER 29, 2019



    YOU MAY ALSO LIKE

    Deprivation affects men and women differently, writes Olivia Remes, PhD candidate at the Cambridge Institute of Public Health, with men more likely to experience depression.
    Scientists have determined that La Crosse virus, which can cause inflammation of the brain in children, affects brain cells differently depending on their developmental stage.
    Living in highly polluted areas may increase the risk of going blind, a study suggests.
    Brazilian and US scientists have developed a glasses-based biosensor capable of measuring blood glucose levels through a person’s tears, offering a less invasive test for diabetics.
    Brazilian scientists have developed a blood test than can detect Zika in less than four hours.
    A new compound that binds to, and enables MRI imaging of, liver cells in the early stage of disease, has been developed by scientists.

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact