News / Tech News

    Quantum Nanodiamonds May Help Detect Viruses Like HIV, COVID-19 Earlier

    The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV and COVID-19.



    Quantum Nanodiamonds May Help Detect Viruses Like HIV, COVID-19 Earlier. Photo: tasnimnews.com


    Paper-based lateral flow tests work the same way as a pregnancy test in that a strip of paper is soaked in a fluid sample and a change in colour—or fluorescent signal—indicates a positive result and the detection of virus proteins or DNA.

    They are widely used to detect viruses ranging from HIV to SARS-CoV-2 (lateral flow tests for COVID-19 are currently being piloted across England) and can provide a rapid diagnosis, as the results do not have to be processed in a lab.

    The new research found that low-cost nanodiamonds could be used to signal the presence of an HIV disease marker with a sensitivity many thousands of times greater than the gold nanoparticles widely used in these tests.

    This greater sensitivity allows lower viral loads to be detected, meaning the test could pick up lower levels of disease or detect the disease at an earlier stage, which is crucial for reducing transmission risk of infected individuals and for effective treatment of diseases such as HIV.

    The research team are working on adapting the new technology to test for COVID-19 and other diseases over the coming months. A key next step is to develop a hand-held device that can "read" the results, as the technique was demonstrated using a microscope in a laboratory. Further clinical evaluation studies are also planned.

    Lead author Professor Rachel McKendry, Professor of Biomedical Nanotechnology at UCL and Director of i-sense EPSRC IRC, said: "Our proof-of-concept study shows how quantum technologies can be used to detect ultralow levels of virus in a patient sample, enabling much earlier diagnosis.

    "We have focused on the detection of HIV, but our approach is very flexible and can be easily adapted to other diseases and biomarker types. We are working on adapting our approach to COVID-19. We believe that this transformative new technology will benefit patients and protect populations from infectious diseases."

    The researchers made use of the quantum properties of nanodiamonds manufactured with a precise imperfection. This defect in the highly regular structure of a diamond creates what is called a nitrogen-vacancy (NV) centre. NV centres have many potential applications, from fluorescent biomarking for use in ultra-sensitive imaging to information processing qubits in quantum computing.

    The NV centres can signal the presence of an antigen or other target molecule by emitting a bright fluorescent light. In the past, fluorescent markers have been limited by background fluorescence, either from the sample or the test strip, making it harder to detect low concentrations of virus proteins or DNA that would indicate a positive test.

    However, the quantum properties of fluorescent nanodiamonds allow their emission to be selectively modulated, meaning the signal can be fixed at a set frequency using a microwave field and can be efficiently separated from the background fluorescence, addressing this limitation.

    The optical results showed up to a five orders of magnitude (100,000 times) improvement in sensitivity compared to gold nanoparticles (that is, a much lower number of nanoparticles were required to generate a detectable signal).

    With the inclusion of a short 10-minute constant-temperature amplification step, in which copies of the RNA were multiplied, the researchers were able to detect HIV RNA at the level of a single molecule in a model sample.

    The work was demonstrated in a laboratory setting but the team hopes to develop the tests so that the results could be read with a smartphone or portable fluorescence reader. This means that the test could, in future, be performed in low-resource settings, making it more accessible to users.

    First author Dr. Ben Miller (i-sense Postdoctoral Research Associate at the London Centre for Nanotechnology at UCL) said: "Paper-based lateral flow tests with gold nanoparticles do not require laboratory analysis, making them particularly useful in low resource settings and where access to healthcare is limited. They are low cost, portable, and user friendly.

    "However, these tests currently lack the sensitivity to detect very low levels of biomarkers. By replacing commonly used gold nanoparticles with fluorescent nanodiamonds in this new design, and selectively modulating their (already bright) emission of light, we have been able to separate their signal from the unwanted background fluorescence of the test strip, dramatically improving sensitivity." (Tasnim News Agency)

    NOVEMBER 28, 2020



    YOU MAY ALSO LIKE

    Scientists have used gene therapy to regenerate damaged nerve fibres in the eye, in a discovery that could aid the development of new treatments for glaucoma.
    Dopamine detector can help in early diagnosis of Parkinson's, Alzheimer's and schizophrenia.
    Unusual nanoparticles could benefit the quest to build a quantum computer.
    Researchers from the Universities of Granada and Cádiz have conducted a study to validate a new methodology that uses mobile phone signals (or those of other smart devices) in urban areas to track and analyse behavior in terms of inhabitants’ movement around the city.
    World population growth and lifestyle are the main causes of the increase in the volume of wastewater. As a result of the treatment of these waters, millions of tons of sewage sludge are generated, filling landfills and generating pollution, unpleasant odours, and public health risks.
    Researchers at Brigham Young University have developed a new breed of drones that can navigate without needing GPS.

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact