Health / Health News

    Scientists discover immune cell subtype in mice that drives allergic reactions

    Allergies can be life-threatening when they cause anaphylaxis, an extreme reaction with constriction of the airways and a sudden drop in blood pressure. Scientists have identified a subtype of immune cell that drives the production of antibodies (link is external) associated with anaphylaxis and other allergic reactions.



    An artist’s rendition of a T cell. Photo: NIAID


    Investigators at Yale University, New Haven, Connecticut, the Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, and their collaborators discovered a subtype of T cell (link is external)s—called T follicular helper cell 13, or Tfh13 cells — in laboratory mice bred to have a rare genetic immune disease called DOCK8 immunodeficiency syndrome. In humans, DOCK8 deficiency leads to recurrent viral infections of the skin and respiratory system and to severe allergies and asthma.

    Allergies and anaphylaxis are linked to the production of high levels of high-affinity IgE antibodies, which bind strongly to allergens to spur allergic reactions. The investigators noted that mice with a DOCK8 deficiency had novel T follicular helper cells, not found in normal mice, that produced a unique combination of chemical messengers called cytokines.

    They then took mice with normal immune systems and sensitized them with respiratory and food allergens to induce severe allergic reactions leading to anaphylaxis. While non-allergic mice lacked Tfh13 cells, allergic mice had both Tfh13 cells and high-affinity IgE.

    With genetic manipulation, the scientists prevented Tfh13 cell development in mice and found that the animals did not make anaphylactic IgE to allergens. To transfer this insight to humans, they then compared blood samples from people with peanut or respiratory allergies to those of non-allergic volunteers and found that individuals with allergies and the associated IgE had elevated levels of Tfh13 cells.

    The study authors conclude that Tfh13 cells are responsible for directing antibody-producing B cells to create high-affinity IgE and that Tfh13 cells may be required for allergic disease, including anaphylaxis. Targeting Tfh13 cells may represent a new strategy to prevent or treat allergic diseases.

    While such a strategy would likely not replace life-saving, emergency epinephrine when anaphylaxis occurs, therapies targeting Tfh13 cells might prevent the onset of anaphylaxis when an allergic person is exposed to an allergen. (National Institutes of Health)

    AUGUST 2, 2019



    YOU MAY ALSO LIKE

    Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
    A team from Washington University School of Medicine in St. Louis, previously engineered a scaffold to guide stem cells into cartilage-producing cells.
    New research suggests that the gut microbiome may help prevent the development of cow’s milk allergy.
    Scientists using an experimental treatment have slowed the progression of scrapie, a degenerative central nervous disease caused by prions, in laboratory mice and greatly extended the rodents’ lives.
    After a diagnosis of breast cancer, many women have surgery followed by chemotherapy and radiation. But a new study shows that if the cancer is caught early enough, women might be able to avoid the chemotherapy.
    Acute kidney injury and chronic kidney disease are closely intertwined, with each disease a risk factor for developing the other and sharing other risk factors in common, as well as sharing causes for the diseases to get worse, and outcomes, suggests a comprehensive analysis.

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact