News / Space News

    Spitzer Studies a Stellar Playground With a Long History

    This image from NASA's Spitzer Space Telescope shows the Perseus Molecular Cloud, a massive collection of gas and dust that stretches over 500 light-years across. Home to an abundance of young stars, it has drawn the attention of astronomers for decades.



    This annotated image of the Perseus Molecular Cloud, provided by NASA's Spitzer Space Telescope, shows the location of various star clusters, including NGC 1333. Photo: NASA/JPL-Caltech


    Spitzer's Multiband Imaging Photometer (MIPS) instrument took this image during Spitzer's "cold mission," which ran from the spacecraft's launch in 2003 until 2009, when the space telescope exhausted its supply of liquid helium coolant. (This marked the beginning of Spitzer's "warm mission.") Infrared light can't be seen by the human eye, but warm objects, from human bodies to interstellar dust clouds, emit infrared light.

    Infrared radiation from warm dust generates much of the glow seen here from the Perseus Molecular Cloud. Clusters of stars, such as the bright spot near the left side of the image, generate even more infrared light and illuminate the surrounding clouds like the Sun lighting up a cloudy sky at sunset.

    Much of the dust seen here emits little to no visible light (in fact, the dust blocks visible light) and is therefore revealed most clearly with infrared observatories like Spitzer.

    On the right side of the image is a bright clump of young stars known as NGC 1333, which Spitzer has observed multiple times. It is located about 1,000 light-years from Earth. That sounds far, but it is close compared to the size of our galaxy, which is about 100,000 light-years across.

    NGC 1333's proximity and strong infrared emissions made it visible to astronomers using some of the earliest infrared instruments.

    In fact, some of its stars were first observed in the mid-1980s with the Infrared Astronomical Survey (IRAS), a joint mission between NASA, the United Kingdom and the Netherlands.

    The first infrared satellite telescope, it observed the sky in infrared wavelengths blocked by Earth's atmosphere, providing the first-ever view of the universe in those wavelengths.

    More than 1,200 peer-reviewed research papers have been written about NGC 1333, and it has been studied in other wavelengths of light, including by the Hubble Space Telescope, which detects mostly visible light, and the Chandra X-Ray Observatory.

    Many young stars in the cluster are sending massive outflows of material - the same material that forms the star - into space. As the material is ejected, it is heated up and smashes into the surrounding interstellar medium.

    These factors cause the jets to radiate brightly, and they can be seen in close-up studies of the region. This has provided astronomers with a clear glimpse of how stars go from a sometimes-turbulent adolescence into calmer adulthood.

    Other clusters of stars seen below NGC 1333 in this image have posed a fascinating mystery for astronomers: They appear to contain stellar infants, adolescents and adults. Such a closely packed mixture of ages is extremely odd, according to Luisa Rebull, an astrophysicist at NASA's Infrared Science Archive at Caltech-IPAC who has studied NGC 1333 and some of the clusters below it.

    Although many stellar siblings may form together in tight clusters, stars are always moving, and as they grow older they tend to move farther and farther apart.

    Finding such a closely packed mixture of apparent ages doesn't fit with current ideas about how stars evolve. "This region is telling astronomers that there's something we don't understand about star formation," said Rebull. The puzzle presented by this region is one thing that keeps astronomers coming back to it. "It's one of my favorite regions to study," she added.

    Since IRAS's early observations, the region has come into clearer focus, a process that is common in astronomy, said Rebull. New instruments bring more sensitivity and new techniques, and the story becomes clearer with each new generation of observatories. (NASA)

    DECEMBER 20, 2019



    YOU MAY ALSO LIKE

    Astronomers using ESO’s Very Large Telescope have observed reservoirs of cool gas around some of the earliest galaxies in the Universe. These gas halos are the perfect food for supermassive black holes at the centre of these galaxies, which are now seen as they were over 12.5 billion years ago.
    Jupiter's south pole has a new cyclone.
    Radio telescopes detect light of massive galaxy seen 970 million years after the Big Bang.
    The most extensive survey of atmospheric chemical compositions of exoplanets to date has revealed trends that challenge current theories of planet formation and has implications for the search for water in the solar system and beyond.
    NASA has big plans for returning astronauts to the Moon in 2024, a stepping stone on the path to sending humans to Mars.
    Shortly after NASA's OSIRIS-REx spacecraft arrived at asteroid Bennu, an unexpected discovery by the mission's science team revealed that the asteroid could be active, or consistently discharging particles into space.

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact