Um Mundo de Conhecimento
    Espaço

    Temperatura das erupções do Sol ajuda a entender a natureza do plasma solar

    O movimento de rotação do Sol produz mudanças em seu campo magnético. E isso faz com que, a cada 11 anos aproximadamente, nossa estrela entre em uma fase de intensa atividade. Erupções na superfície do Sol (solar flares, em inglês) lançam para longe grande quantidade de partículas e liberam altos níveis de radiação.



    Imagem do Sol em ultravioleta, no comprimento de onda 17,1 nanômetros, na linha espectral do ferro ionizado. Crédito: Solar Dynamics Observatory/Nasa


    Durante as erupções, a liberação de energia aquece a cromosfera, causando a ionização quase completa do hidrogênio atômico presente nessa região. Mas, como o plasma é muito denso, a taxa de recombinação do hidrogênio também é alta. Em consequência, estabelece-se um processo recorrente de ionização e recombinação de hidrogênio, produzindo um tipo característico de emissão de radiação, na faixa do ultravioleta, chamado de “Contínuo de Lyman” (LyC). A denominação é uma homenagem ao físico norte-americano Theodore Lyman IV (1874-1954).

    Descrições teóricas sugerem que a chamada “temperatura de cor” do Contínuo de Lyman estaria associada à temperatura do plasma que originou a erupção. Dessa forma, a temperatura de cor poderia ser utilizada como um recurso para determinar a temperatura do plasma durante as tempestades solares.

    Um novo estudo simulou as emissões de dezenas de erupções diferentes. E confirmou a associação entre a temperatura de cor do Espectro de Lyman (LyC) e a temperatura do plasma da região onde a emissão é originada. Também confirmou que a região atinge um equilíbrio termodinâmico local entre o plasma e os fótons que compõem o LyC.

    O estudo teve apoio da FAPESP e a participação do brasileiro Paulo José de Aguiar Simões, professor da Escola de Engenharia da Universidade Presbiteriana Mackenzie e pesquisador do Centro de Radioastronomia e Astrofísica Mackenzie.

    As simulações corroboraram um importante resultado observacional obtido no Solar Dynamics Observatory pelo astrônomo argentino Marcos Machado. Este mostrou que a temperatura de cor, que nos períodos calmos se situa no patamar de 9 mil kelvins, sobe, nos flares, para a faixa dos 12 mil a 16 mil kelvins.

    A enorme quantidade de energia que provê a Terra com luz e calor é gerada principalmente pela conversão de hidrogênio em hélio. Tal processo de fusão nuclear ocorre no interior da estrela, mas essa vasta região é inacessível à observação direta, porque a luz não atravessa a “superfície” do Sol.

    “O que conseguimos observar diretamente situa-se da superfície para fora. E a primeira camada, que se estende até uns 500 quilômetros de altitude, é chamada de fotosfera. Sua temperatura é da ordem de 5.800 kelvins. É nessa região que aparecem as manchas solares, nos lugares onde os campos magnéticos emergentes do interior inibem a convecção, mantendo o plasma mais frio – o que produz a aparência escura das manchas”, informa Simões.

    Acima da fotosfera, a cromosfera estende-se por mais 2 mil quilômetros, aproximadamente. “Nessa camada, a temperatura aumenta, podendo chegar a mais de uma dezena de milhares de kelvins, e a densidade do plasma diminui. Devido a essas características, o hidrogênio atômico encontra-se parcialmente ionizado, com prótons e elétrons separados”.

    No topo da cromosfera, em uma fina camada de transição, a temperatura sobe abruptamente, passando de 1 milhão de kelvins, e a densidade do plasma cai muitas ordens de grandeza.

    Esse súbito aquecimento na passagem da cromosfera para a coroa é um fenômeno contraintuitivo, pois seria de esperar uma diminuição da temperatura com o aumento da distância em relação à fonte.

    “Ainda não temos uma explicação para isso. Diversas propostas foram apresentadas pelos físicos solares, mas nenhuma foi aceita sem reservas pela comunidade”, pontua Simões.

    A coroa estende-se rumo ao meio interplanetário, sem uma nova região de transição definida. Nela, a influência dos campos magnéticos é marcante, estruturando o plasma, especialmente nas chamadas regiões ativas, facilmente identificadas em imagens no ultravioleta. É nessas regiões ativas que as erupções solares ocorrem.

    “Nessas tempestades solares, a energia acumulada nos campos magnéticos coronais é liberada de forma repentina, aquecendo o plasma e acelerando as partículas. Os elétrons, por terem massa menor, podem ser acelerados a até 30% da velocidade da luz. Uma parte dessas partículas, que viajam ao longo das linhas de força do campo magnético, é lançada no meio interplanetário. Outra parte segue o caminho oposto, da coroa para a cromosfera – onde sofre colisões no plasma de alta densidade e transfere sua energia para o meio. Esse excesso de energia aquece o plasma local, causando ionização dos átomos. A dinâmica de ionização e recombinação origina o Contínuo de Lyman”, detalha o pesquisador.

    Os picos de atividade solar ocorrem em intervalos de aproximadamente 11 anos. Durante os períodos de alta atividade, os efeitos sobre a Terra são bastante nítidos: maior ocorrência de auroras boreais; blecautes nas comunicações por rádio; incremento do efeito de cintilação nos sinais de GPS; aumento da força de arraste em satélites, reduzindo suas velocidades e, consequentemente, a altitude de suas órbitas. O conjunto desses fenômenos, juntamente com as propriedades físicas do meio interplanetário próximo à Terra, é chamado de “clima espacial”. (José Tadeu Arantes/Agência FAPESP)

    10 DE ABRIL DE 2023



    VOCÊ TAMBÉM PODE ESTAR INTERESSADO EM

    Debaixo da superfície de Plutão pode haver um oceano congelado.
    Com o auxílio dos telescópios do ESO, os astrônomos descobriram manchas gigantes na superfície de estrelas extremamente quentes escondidas em aglomerados estelares.
    Com o auxílio do Very Large Telescope do ESO foram descobertas estrelas formando-se nos poderosos fluxos de matéria lançados por buracos negros supermassivos, situados nos núcleos de galáxias.
    Pesquisa desenvolvida por cientistas do Reino Unido, Estados Unidos e Japão constatou a presença de um composto químico chamado fosfina na atmosfera de Vênus, o que pode indicar um sinal de vida no planeta.
    Com o auxílio do Very Large Telescope do ESO, os astrónomos observaram uma enorme mancha escura na atmosfera de Neptuno com um inesperado ponto brilhante adjacente mais pequeno.
    Com o auxílio do Very Large Telescope (VLT) do ESO, pesquisadores observaram um planeta extremo onde suspeitam que chova ferro.

    © 1991-2024 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Termos de Uso
    Contact