Health / Health News |
Toothpaste ingredient may help fight drug-resistant malaria
An ingredient commonly found in toothpaste could be employed as an anti-malarial drug against strains of malaria parasite that have grown resistant to one of the currently-used drugs. This discovery, led by researchers at the University of Cambridge, was aided by Eve, an artificially-intelligent ‘robot scientist’.
When a mosquito infected with malaria parasites bites someone, it transfers the parasites into their bloodstream via its saliva. These parasites work their way into the liver, where they mature and reproduce.
After a few days, the parasites leave the liver and hijack red blood cells, where they continue to multiply, spreading around the body and causing symptoms, including potentially life-threatening complications.
Now a team of researchers employed the Robot Scientist ‘Eve’ in a high-throughput screen and discovered that triclosan, an ingredient found in many toothpastes, may help the fight against drug-resistance.
When used in toothpaste, triclosan prevents the build-up of plaque bacteria by inhibiting the action of an enzyme known as enoyl reductase (ENR), which is involved in the production of fatty acids.
Scientists have known for some time that triclosan also inhibits the growth in culture of the malaria parasite Plasmodium during the blood-stage, and assumed that this was because it was targeting ENR, which is found in the liver.
However, subsequent work showed that improving triclosan’s ability to target ENR had no effect on parasite growth in the blood.
Working with ‘Eve’, the research team discovered that in fact, triclosan affects parasite growth by specifically inhibiting an entirely different enzyme of the malaria parasite, called DHFR. DHFR is the target of a well-established antimalarial drug, pyrimethamine; however, resistance to the drug among malaria parasites is common, particularly in Africa.
The Cambridge team showed that triclosan was able to target and act on this enzyme even in pyrimethamine-resistant parasites.
Because triclosan inhibits both ENR and DHFR, the researchers say it may be possible to target the parasite at both the liver stage and the later blood stage.
Robot scientist Eve was developed by a team of scientists at the Universities of Manchester, Aberystwyth, and Cambridge to automate – and hence speed up – the drug discovery process by automatically developing and testing hypotheses to explain observations, run experiments using laboratory robotics, interpret the results to amend their hypotheses, and then repeat the cycle, automating high-throughput hypothesis-led research. (University of Cambridge)