Edición Española
    News / Ciencias

    Investigadores de la UGR proponen un modelo de motor cuántico basado en un único átomo en contacto con un gas de fotones dentro de una cavidad reflectante

    Investigadores del Grupo de Física Estadística y de la Materia de la Universidad de Granada han propuesto un modelo de motor cuántico basado en un único átomo en contacto con un gas de fotones dentro de una cavidad reflectante.



    Un modelo de motor cuántico basado en un único átomo en contacto con un gas de fotones dentro de una cavidad reflectante. Foto: Shahadat Rahman/Unsplash


    Los cambios cuánticos en la presión de radiación podrían impulsar un pistón mesoscópico, abriendo así la puerta a la conversión eficiente de calor en trabajo a escalas microscópicas.

    La característica esencial de cualquier motor es que convierte parcialmente calor en trabajo. Es decir, que partiendo de energía térmica puede poner en movimiento piezas mecánicas.

    Para los motores de combustión interna, como los de los coches, la combustión del gas hace que se expanda y empuje los pistones, lo que eventualmente hace que las ruedas se muevan y el vehículo se desplace.

    En el Grupo de Física Estadística y de la Materia granadino han diseñado un motor cuántico de similares características, pero en escalas microscópicas, donde rigen las leyes de la física cuántica.

    Según Álvaro Tejero, primer autor de la publicación, «puedes imaginar mantener un pistón clásico pero reemplazando el gas clásico y macroscópico con el sistema cuántico más simple, que es un átomo. Ese fue nuestro punto de partida”.

    También comenta que “en termodinámica cuántica no tenemos clara una interpretación para el concepto de trabajo. Lo verdaderamente sorprendente es que se pueda definir este trabajo como un trabajo de expansión, análogo al caso clásico, para sistemas cuánticos optomecánicos. A partir de aquí, la aplicación para realizar un ciclo termodinámico completo es directa».

    El átomo y el pistón en el motor cuántico estarían dentro de una pequeña cavidad hecha de un material reflectante, como un espejo. El pistón estaría hecho de un material reflectante similar y sería un objeto mesoscópico móvil, capaz de reaccionar a pequeños cambios en la presión cuántica de la radiación.

    En un motor convencional, el pistón se mueve porque es golpeado repetidamente por muchos átomos de gas, pero aquí su movimiento estaría impulsado por la presión de los fotones. Esto podría suceder de varias maneras diferentes.

    Si el átomo se calienta o gana energía del entorno del motor previamente excitado, puede liberar ese exceso de energía emitiendo fotones que quedarían atrapados rebotando dentro de la cavidad reflectante e interactuando repetidamente con el átomo. Esto haría que la radiación se acumulara incrementando su presión sobre el pistón, que se desplazaría como respuesta al cambio.

    Como afirma Daniel Manzano, otro de los autores de este trabajo, diferentes motores cuánticos han sido modelados con anterioridad, e incluso construidos experimentalmente, pero ha faltado hasta ahora una prueba rigurosa de que puedan producir trabajo mecánico útil.

    Pablo Hurtado, otro miembro del equipo de investigación, señala la sorpresa inicial al comprobar cómo las herramientas de la física estadística y la termodinámica estocástica permiten entender un motor microscópico de estas características, donde efectos cuánticos como la coherencia y el entrelazamiento pueden jugar un papel esencial, o donde definir ideas aparentemente sencillas como el trabajo o la temperatura no es trivial.

    14 DE MARZO DE 2024



    TAMBIÉN TE PUEDE INTERESAR

    La investigación, liderada por la Universidad de Granada, revela mediante métodos de IA la interacción que existe entre nuestro cuerpo y nuestra mente para mantener la salud
    ¿Cómo podríamos ir al centro de la Tierra y ver lo que hay ahí dentro? Quizás por el sitio más idóneo: bajando por la boca de un volcán (como el que entró hace poco en erupción en Islandia), al estilo de lo que hicieron los protagonistas de la novela de Julio Verne Viaje al centro de la Tierra, de 1864. ¿Es una idea viable?

    © 1991-2024 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Aviso legal
    Contact