Health / Medical Topics

    NFAT Pathway

    Hypertrophy associated with both hypertension and obstruction to ventricular outflow leads to pathologic cardiac growth and it is associated with increase morbidity and mortality. Symptomatic ventricular disease takes a growing toll on the health of nations. As other cardiovascular diseases such as stroke and myocardial infarction are in decline as causes of mortality, the heart failure problem becomes increasingly urgent. Congenital heart defects occur in 1% of live births and fetal heart malformations are implicated in many pregnancies that end in still-birth or spontaneous abortion. The current paradigm suggests that the heart adapts to excess of hemodynamic loading by compensatory hypertrophy, which under condition of persistent stress, over time evolves into dysfunction and myocardial failure. There is considerable evidence that direct effects of increased mechanical stress are sensed within the ventricular wall and that signal is critical for the generation of growth responses. Despite compelling statistics we still do not understand biochemically why heart defects are so prevalent. A single transcriptional regulator initially associated with the activation of the T-cells (NFATc4) has been shown to link genetic and environmental causes of one class of congenital heart disorders, birth defects involving valve and septum formation. Within the endocardium, specific inductive events appear to activate NF-ATc: it is localized to the nucleus only in endocardial cells that are adjacent to the interface with the cardiac jelly and myocardium, which are thought to give the inductive stimulus to the valve primordia. Treatment with FK506, a specific calcineurin inhibitor, prevents nuclear localization of NF-ATc4. Activated CaMK stimulates calcineurin, which than acts through NF-ATc4 in association with GATA4, to induce hypertrophy. A model for the proposed role of calreticulin in the regulation of cardiac development requires a myogenic signal from extracellular space to activate the production of IP3 that results in the release of Ca2+ from ER under the regulation of calreticulin (CRT). Increased intracellular Ca2+ binds to calmodulin (CaM) and activates calcineurin (CaN). CaN dephosphorylates NF-ATc4 that translocates to the nucleus. In the nucleus NF-AT forms complexes with the GATA-4 and other transcription factors leading to activation of transcription of genes (e.g., ANF, a-actin, b-myosin, TNFa, ET-1, Adss1) essential for cardiac development. (NCI Thesaurus/BIOCARTA)




    YOU MAY ALSO LIKE

    Human NF2 wild type allele is located in the vicinity of 22p12.2 and is approximately 95 kb in length. This allele, which…
    This gene plays a role in cell adhesion and cytoskeletal remodeling. It is also involved in suppression of cell growth.
    A genetic condition in which tumors form on the nerves of the inner ear and cause loss of hearing and balance. Tumors…
    Human NF1 wild type allele is located in the vicinity of 17p11.2 and is approximately 279 kb in length. This allele, which…
    This gene plays a role in signal transduction and cytoskeletal remodeling.
    A rare genetic condition that causes brown spots and tumors on the skin, freckling in skin areas not exposed to the sun,…

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact